III-V 半导体器件

III-V 半导体器件

Veeco/CNT Fiji® 一直处于 III-V 设备最新进步的最前沿。这包括 III-V 材料,如 AIN,InN 和 GaN 通过原子层外延 (ALE) 的沉积、装置质量三元化合物,如 AlxGa1-xN 和 InlxAl1-xN 的外延生长、缓冲层沉积以实现异质外延和栅极电介质和钝化层的生长。

启用原子层沉积 (ALD) 的 III-V 设备:外延增长,多组分膜,钝化层

装置质量 AlN [2]、InN [1] 和 GaN [3] 的外延生长最近在 Veeco/CNT Fiji® 中得到展示。在以下图 1 中,HRTEM 和 IFFT 确认晶体 InN 与 a-蓝宝石一致。图 2 显示了 GaN 上 AlN 的高质量生长 – 摇摆曲线的 FWHM 对于 37nm 膜为 670 弧秒 – 这与分子束外延 (MBE) 生长的 1.6μm 相当 (420 弧秒)。

高电子迁移率晶体管基于在晶格匹配的半导体之间界面处的高移动性 2D 电子气体的形成。表 1 显示在所有原子层沉积 (ALD) HEMT 装置(ALE GaN/ALE AlGaN/ALD Al2O3)中具有低载体浓度和高移动性,表明存在 2D 电子气体。另外,由于 ALE-ALN 的表面钝化,已显示出 HEMT 器件的性能改善 [5]。受原子层沉积 (ALD) 低温支持,混合石墨烯/III-N 异质结构已生长 [6],可保持石墨烯表面功能化。


图 1:蓝宝石上的 InN [1]


图 2:AlN/GaN/a-蓝宝石的峰值 [2]

III-V 设备的原子层沉积 (ALD) 优势

  • 低沉积温度
  • 易于合金生长,包括以前未访问的阶段
  • 用于纳米线等 3D 结构的沉积

表 1:通过 ALD/ALE 的 HEMT 器件 [4]

样本 μ (cm2/V-s) Ns (cm-2)
AlGaN / GaN 1042 1.6 x 1012
Al2O3 / Al0.27Ga0.73N / GaN 871 6.0 x 1011

参考 – 最近在 Veeco CNT 原子层沉积 (ALD)平台上完成的出版物

  1. Nepal, N., Anderson, V. R., Hite, J. K. & Eddy, C. R., Jr. Growth and Characterization of III-N Ternary Thin Films by Plasma Assisted Atomic Layer Epitaxy at Low Temperatures. Thin Solid Films 1–17 (2015). doi:10.1016/j.tsf.2015.04.068
  2. Ozgit-Akgun, C. et al. Fabrication of flexible polymer–GaN core–shell nanofibers by the combination of electrospinning and hollow cathode plasma-assisted atomic layer deposition. J. Mater. Chem. C (2015). doi:10.1039/C5TC00343A
  3. Altuntas, H., Ozgit-Akgun, C., Donmez, I. & Biyikli, N. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films. J Appl Phys 117, 155101 (2015).
  4. OConnor, E. et al. Effect of forming gas annealing on the inversion response and minority carrier generation lifetime of n and p-In0.53Ga0.47As MOS capacitors. Microelectron Eng (2015). doi:10.1016/j.mee.2015.04.103
  5. Kao, E., Yang, C., Warren, R., Kozinda, A. & Lin, L. ALD titanium nitride coated carbon nanotube electrodes for electrochemical supercapacitors. TRANSDUCERS 2015 – 2015 18th International Solid-State Sensors, Actuators and Microsystems Conference 498–501 (2015). doi:10.1109/TRANSDUCERS.2015.7180969
  6. Haider, A., Ozgit-Akgun, C., Goldenberg, E., Okyay, A. K. & Biyikli, N. Low-Temperature Deposition of Hexagonal Boron Nitride Via Sequential Injection of Triethylboron and N 2/H 2Plasma. J Am Ceram Soc n/a–n/a (2014). doi:10.1111/jace.13213
  7. Assaud, L., Pitzschel, K., Hanbucken, M. & Santinacci, L. Highly-Conformal TiN Thin Films Grown by Thermal and Plasma-Enhanced Atomic Layer Deposition. ECS Journal of Solid State Science and Technology 3, P253–P258 (2014).
  8. Koehler, A. D., Nepal, N., Anderson, J. T., Hobart, K. D. & Kub, F. J. Investigation of AlGaN/GaN HEMTs Passivated by AlN Films Grown by Atomic Layer Epitaxy. in 135 (2013).
  9. Ozgit-Akgun, C., Donmez, I. & Biyikli, N. (Invited) Plasma-Enhanced Atomic Layer Deposition of III-Nitride Thin Films. ECS Transactions 58, 289–297 (2013).
  10. Eddy, C. R., Jr, Nepal, N., Hite, J. K. & Mastro, M. A. Perspectives on future directions in III-N semiconductor research. Journal Of Vacuum Science & Technology A-Vacuum Surfaces And Films 31, 058501 (2013).
  11. Nepal, N. et al. Epitaxial Growth of III–Nitride/Graphene Heterostructures for Electronic Devices. Appl Phys Express 6, 061003 (2013).
  12. Nepal, N. et al. Epitaxial Growth of Cubic and Hexagonal InN Thin Films via Plasma-Assisted Atomic Layer Epitaxy. Cryst Growth Des 13, 1485–1490 (2013).
  13. Ozgit-Akgun, C., Kayaci, F., Donmez, I., Uyar, T. & Biyikli, N. Template-Based Synthesis of Aluminum Nitride Hollow Nanofibers Via Plasma-Enhanced Atomic Layer Deposition. J Am Ceram Soc n/a–n/a (2012). doi:10.1111/jace.12030<
  14. Ozgit, C., Donmez, I., Alevli, M. & Biyikli, N. Atomic layer deposition of GaN at low temperatures. J Vac Sci Technol A 30, (2012).
  15. Biyikli, N., Ozgit, C. & Donmez, I. Low-Temperature Self-Limiting Growth of III-Nitride Thin Films by Plasma-Enhanced Atomic Layer Deposition. Nanosci Nanotechnol Lett4, 1008–1014 (2012).
  16. Ozgit, C., Donmez, I., Alevli, M. & Biyikli, N. Atomic layer deposition of GaN at low temperatures. J Vac Sci Technol A 30, 01A124 (2012).
  17. Alevli, M., Ozgit, C., Donmez, I. & Biyikli, N. Structural properties of AlN films deposited by plasma-enhanced atomic layer deposition at different growth temperatures. phys. stat. sol. (a) 209, 266–271 (2011).
  18. Alevli, M., Ozgit, C., Donmez, I. & Biyikli, N. The influence of N2/H2 and ammonia N source materials on optical and structural properties of AlN films grown by plasma enhanced atomic layer deposition. J Cryst Growth 335, 51–57 (2011).
  19. Alevli, M., Ozgit, C. & Donmez, I. The Influence of Growth Temperature on the Properties of AlN Films Grown by Atomic Layer Deposition. ACTA PHYSICA POLONICA A (2011).
  20. Ozgit, C., Donmez, I. & Biyikli, N. Self-Limiting Growth of GaN at Low Temperatures. ACTA PHYSICA POLONICA A (2011).